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Feasibility study of high-strength and high-damping materials by means of
hydrogen internal friction in amorphous alloys
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Abstract

Exploring the feasibility of high-strength and high-damping materials, we investigated the hydrogen internal friction peak (HIFP) in
amorphous (a-) Zr Cu Al (x50, 5, 10) and a-Zr Cu Al and the tensile strength, s , of a-Zr Cu Al as a function of the60 402x x 40 50 10 f 60 30 10

hydrogen concentration. Results are discussed relative to the HIFP reported in a-Zr Cu , a-Zr Cu and a-Ti Cu . s of50 50 40 60 50 50 f

a-Zr Cu Al increases from 1.5 GPa in the no-charged state to 2 GPa at about 15 at.% H. The HIFP in the a-alloys is observed as a60 30 10

very broad peak, where the peak temperature found varies from 350 K in a-Zr Cu Al with 1 at.% H to 200 K in a-Ti Cu with 1540 602x x 50 50
21 22at.%. Although the HIFP with the peak height, Q , beyond 3310 is observed in a-Zr Cu Al (x50, 10) in the as charged state,peak 60 402x x

21its Q shows a decrease after aging at 350 K due to the hydrogen induced structural relaxation (HISR). However, for all the presentpeak
21 22a-alloys, Q observed in the thermally stable state after the HISR can be still as high as 2310 . The present results suggest that thepeak

hydrogen-charged a-alloys are potential high-strength and high-damping materials.  2002 Elsevier Science B.V. All rights reserved.
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1. Introduction while since the hydrogen internal friction peak (HIFP) in
a-alloys was found by Berry et al. [1], much effort has

Future space development projects may demand smart been devoted to the subject. Pronounced HIFP can be
structural materials such as a high-strength and high-
damping material working near and below room tempera-
ture (RTs). The demand for such a material working near
and above RT may be even more urgent for smart
precision machinery, e.g. a wire bonding machine. Fig. 1
shows a specific damping index or internal friction vs.
tensile strength map, where various metallic materials are
classified into three groups, the high-, intermediate- and
low-damping materials. The three lines are drawn to guide
eyes. As indicated by a dashed-line box in Fig. 1, high-
damping materials with tensile strength beyond 1 GPa may
represent targets for future smart structural materials. It is
known that most of amorphous (a-) alloys show the
mechanical responses such as high strength, large elastic
strain and low Young’s modulus, indicating that they are

21tough and flexible. However, the internal friction, Q , in
a-alloys below the glass transition temperature is as low as
that in the low- or intermediate-damping materials. Mean-

21*Corresponding author. Tel.: 181-298-535-063; fax: 181-298-557- Fig. 1. A specific damping index or internal friction (Q ) vs. tensile
440. strength map. The ‘specific damping index’ is the ratio of the energy

E-mail address: mizuh@ims.tsukuba.ac.jp (H. Mizubayashi). dissipated to the maximum stored energy when expressed as a percentage.
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observed in the a-alloys which can contain much hydrogen
in solution [2–12]. A recent work on hydrogen-charged
a-Ti–Cu and a-Zr–Cu indicates that the local strain around
hydrogen in the a-alloys is highly anisotropic [13], pro-
viding the evidence that the stress-induced redistribution of
hydrogen [2–12] gives rise the HIFP in a-alloys. After
these works, one can expect that a hydrogen-charged
a-alloys may serve us as useful high-strength and high-
damping material especially by controlling the behavior of
hydrogen atoms in a-alloys. The present work is the first
attempt of this concept where we have examined a-Zr–Cu
and a-Zr–Cu–Al alloys.

2. Experimental

Amorphous (a-) Zr–Cu and Zr–Cu–Al alloy ribbons
about 30 mm thick and 1 mm wide were prepared by melt
spinning in a high-purity Ar gas atmosphere and checked
by the conventional u –2u scan X-ray diffraction. Hydro-
gen charging was made electrolytically and the hydrogen
concentration, C , in a hydrogen-charged specimen wasH

measured by means of the thermal degassing method in a
21 Fig. 2. (a) Examples of the tensile tests of a-Zr Cu Al specimens athigh vacuum. The internal friction, Q , was measured by 60 30 10

RT before or after hydrogen charging. (b) The fracture strength, s , foundfmeans of the vibrating reed method working at about 200
in (a).26Hz and strain amplitude of 10 .

increasing C . On the other hand, as seen in Fig. 3b, TH peak

found in a-Zr Cu Al is about 350 K in the specimen40 50 103. Results and discussion
with 1.3 at.% H and shows a decrease down to about 250

Fig. 2a shows examples of the tensile tests of a-
Zr Cu Al specimens at RT before or after hydrogen60 30 10

charging. It is noted that a-Zr Cu Al is known as one60 30 10

of the high glass-forming-ability a-alloys [14]. Fig. 2b
shows the fracture strength, s , found in Fig. 2(a). sf f

observed for the as-prepared specimens is 1.5 GPa and
shows an increase to 2 GPa with increasing C in theH

present C range, indicating that the prerequisite for sH f

mentioned in Fig. 1 is satisfied for C below 15 at.%.H

Fig. 3a shows examples of the HIFP observed in as-
quenched a-Zr Cu Al specimens with C below 1560 30 10 H

at.%. The specimen with 4.5 at.% H has been annealed at
600 K for 2 h in a vacuum prior to hydrogen charging. Fig.
3b is similar to Fig. 3a but for the HIFP observed in
as-quenched a-Zr Cu Al specimens with C below 1640 50 10 H

at.%. For the sake of simplicity, only the heating runs are
shown except that both the heating and cooling runs are
shown for a couple of specimens as indicated in Fig. 3a
and b. Both the HIFP in a-Zr Cu Al specimens and60 30 10

that in a-Zr Cu Al specimens are observed as a very40 50 10

broad peak similar to the HIFP in a-Zr Cu [11] or50 50

a-Zr Cu [15]. In the following, we shall characterize the40 60

HIFP by the peak temperature, T , and peak height,peak
21Q . As seen in Fig. 3a, T observed in a-peak peak Fig. 3. (a) Examples of the HIFP observed in a-Zr Cu Al specimens.60 30 10

Zr Cu Al is about 280 K in the specimen with 1.1 at.% (b) Examples of the HIFP observed in a-Zr Cu Al specimens. See60 30 10 40 50 10

H and shows a decrease down to about 250 K with text for details.
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K with increasing C . That is, T found in the low C a-Zr Cu Al , below about 10 at.% for a-Zr Cu andH peak H 60 402x x 50 50

a-Ti Cu and below about 4 at.% for a-Zr Cu Al .range is higher in a-Zr Cu Al than in a-Zr Cu Al . 50 50 40 602x x40 50 10 60 30 10
21 21 22 This suggests that the HIFP observed near 1 at.% H mayFor Q , the HIFP with Q beyond 3310 can bepeak peak

21 associated with the stress-induced redistribution of hydro-observed in a-Zr Cu Al and in contrast, Q ob-60 30 10 peak
22 gen atoms which are sitting in the Zr (or Ti ) sites. Theserved in a-Zr Cu Al remains near or below 2310 . 4 440 50 10

fact that the HIFP in a-alloys is observed as a very broadThese issues will be mentioned later. For the heating and
21 peak suggests that the redistribution of hydrogen atomscooling runs shown in Fig. 3a and b, a decrease in Q peak

may take place by migration of hydrogen atoms threadingafter heating up to about 380 K is observed for the as
21 through various tetrahedral sites. We assume below thecharged specimen. The decrease in Q is not due topeak

representative migration path of hydrogen atoms which isdegassing of hydrogen but due to the structural relaxation.
21 21 responsible for T . Eq. (1) also predicts that DC forThe higher the Q is, the larger the decrease in Q is. peak y,0peak peak

the (Cu and/or Al) sites is about 20 at.% in a-This observed result again suggests that the anisotropic 4

Zr Cu Al , about 10 at.% for a-Zr Cu and a-local strain around hydrogen in the a-alloys is responsible 40 602x x 50 50

Ti Cu and about 4 at.% for a-Zr Cu Al , respec-for both the HIFP [13] and the hydrogen induced structural 50 50 60 402x x

tively. After the consideration mentioned above, we sur-relaxation (HISR) in a-alloys [15].
mise that the representative migration path of hydrogenFig. 4 shows the T vs. C data found for variouspeak H
atoms responsible for T inevitably threads through thea-alloys. The general trend of a decrease in T with peakpeak
(Cu and/or Al) sites in a-Zr Cu Al but it is not theincreasing C is believed to reflect an increase in the 4 40 602x xH
case in a-Zr Cu , a-Zr Cu Al (x50, 5, 10) andchemical potential of hydrogen in a-alloys with increasing 50 50 60 402x x

a-Ti Cu . In other words, the present results indicate thatC [3,16,17]. As seen in Fig. 4, T found at C near 1 50 50H peak H
T can be controlled in between 350 and 250 K byat.% is about 280 K for a-Zr Cu , a-Zr Cu Al peak50 50 60 402x x
adjusting composition of a-alloys.(x50, 5, 10) and a-Ti Cu and about 350 K for a-50 50 21Fig. 5a–d show the Q vs. C data observed forZr Cu Al (x50, 10), suggesting that the representa- peak H40 602x x
various a-alloys. As seen in Fig. 5a, as-hydrogen-chargedtive activation enthalpy of hydrogen migration at the low
a-Zr Cu Al specimens can be classified into twoC range is higher in a-Zr Cu Al than in the other 60 402x xH 40 602x x 21 22groups, the specimens showing Q beyond 3310 anda-alloys. In later-transition-metal /early-transition-metal a- peak

21 22those showing Q below 2310 . It is noted that noalloy, a-A B , the maximum hydrogen content in the peaky 12y

changes in the X-ray diffraction spectra are detectedA B sites, DC , may be given by:m 42m y,m
21among these specimens. As already seen in Fig. 3a, Q peak

22m 42m beyond 3310 are also found in the specimens whichDC 5 f [4! /m!(4 2 m)!] ? y ? (1 2 y) (1)y,m 0

were annealed at 600 K before hydrogen charging. In
where the alloys are assumed to be structurally isomorphic
and chemically random and f 51.6 at y50.5 [18]. Eq. (1)0

predicts that most of hydrogen atoms may occupy the Zr4

(or Ti ) sites in the C range below about 20 at.% for4 H

21Fig. 4. The T vs. C data found for various a-alloys, where the data Fig. 5. The Q vs. C data observed; (a) a-Zr Cu Al , (b) a-peak H peak H 60 402x x

found in a-Ti Cu [10], a-Zr Cu [11] and a-Zr Cu [15] are also Zr Cu [11], (c) a-Zr Cu [15] and a-Zr Cu Al and (d) a-Ti Cu50 50 50 50 40 60 50 50 40 60 40 50 10 50 50

shown. [10].
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21 22contrast, no specimens showing Q beyond 3310 are Acknowledgementspeak
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21 22 21 Materials Project of ‘Research for the Future’ of JapanQ below 2310 than for the HIFP with Q beyondpeak peak

22 Society for the Promotion of Science.3310 , indicating that the former reflects the HIFP in the
21thermally stable state. For a-Zr Cu Al , the Q data60 30 10 peak

22 21found below 2310 show an increase in Q followedpeak
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